Multiple Sources of Interdisciplinary Training

DNAC

Problem

Visualizing interdisciplinary education requires producing a comprehensive representation of graduate duc(ation across campus and then layering that representation with interdisciplinarity. The ideal tig-
ures) should reveal the organization of graduate education while making clear both individual and de-

Mapping Graduate Education
The network of faculty linked by shared students nicely captures the structure of graduate education
To highlight faculty who most contribute to interdisciplinary education, we aggregate faculty who sit To highlight faculty who most contribute to interdisciplinary education, we aggregate faculty who sit
only on a single program's committes. To highlight the multilevel nature of department and individual bridging, we combine a global distance minimization routine with a program-centered node overlap minimization algorithm and a final pass that places key bridging nodes at the optimal position spanning
programs. This three-stage layout routine nicely sorts the university by division, while both highlighting programs. This three-stage layout routine nicely sorts the university by division, while both highlightin Measuring Interdisciplinarity
The core problem interdisciplinarity aims to solve is bridging otherwise disconnected academic silos,
and we have three ways to think about such bridging. by the structure of the PhD production network, and we have three ways to think about such bridging: by the structure of the PhD production network,
by academic plans, or by scholarly fields. For the network, betweenness centrality (Freeman 1977) captures the extent to which faculty connect otherwise disconnecteden facsulty Acentradtemic proemaram bridgging captures how faculty training crosses Phi programs, while field bridging captures how faculty publica-
tions crosss multiple scholarly fields. While programs are given in the data, we must infer faculty field from faculty publication patterns, since some units employ multiple disciplines. We do so by clustering the Web of Science journal co-citation tables, to generate sets of similarly cited journals, excluding gen
eral journals. We then match faculty publications to these clusters to identify a field for each publication. For both programs and fields, interdiscipilinarity occurs both within facully or or by committees.

To facilitate multi-level comparisons across the network and content-based measures, we developed a technique that shadows the network layout but tiles nodes into homogeneous blocks. Faculty are rep-
resented as tiles that are then colored by the relevant interdisciplinarity score. Scores on the first row resented as ties that are then colored by the reievant interdiscilipinarity score. Scores on the first row
eepresent academic program; those on the second row scholarly field. The first column captures participation, the second column within-person interdisciplinarity and the third committee interdisciplinarity. Results
The PhD production network is broadly organized by division, with high connectivity within division and low between. The faculty with highest betweenness centrality generally cross divisions. The humanities
and interpretive social sciences are fairly well-integrated by program, while the remainder of the social and interpretive social sciences are fairly well-integrated by program, while the remainder of the social
sciences are structurally more insular. Within the natural sciences, seemingly high program interdisciplinarity is less pronounced at the field level, as many faculty from different nominal programs publish in

Technical Tidbits. The faculty sample is limited to 1277 faculty yho have served on a PhD com mittee in the last 5
 ties siven to the mode within their primary appointment organization. We used a fuzzy matching algorithm to link
faculty publication journals to the discipininary cluster file. This resulted in about 80\% of faculty publications being matched, with verch high h hevels of fissing datat in the Humanities and interpretive social sciences and we thus felt it

 neighborhood of each tile. Analysis, cleaning and figure production were done initial
produced in Pajek then edited in Illustrator and the poster compiled with InDesign.

References
Batagel $V, . .$.

